Sparse Rewards Can Self-Train Dialogue Agents

27 Sept 2024 (modified: 05 Feb 2025)Submitted to ICLR 2025EveryoneRevisionsBibTeXCC BY 4.0
Keywords: Self-training, LLM, Simulation, Benchmark, Tool-calling, Dataset, Task Oriented Dialogue, Dialogue, User Simulation, Beam Search, Algorithm, Preference Tuning, Supervised Finetuning, JOSH, ToolWOZ
TL;DR: We introduce a self training procedure JOSH to train small and frontier models on tool-based dialogue interactions and a new tool calling agent benchmark ToolWOZ.
Abstract: Recent advancements in state-of-the-art (SOTA) Large Language Model (LLM) agents, especially in multi-turn dialogue tasks, have been primarily driven by supervised fine-tuning and high-quality human feedback. However, as base LLM models continue to improve, acquiring meaningful human feedback has become increasingly challenging and costly. In certain domains, base LLM agents may eventually exceed human capabilities, making traditional feedback-driven methods impractical. In this paper, we introduce a novel self-improvement paradigm that empowers LLM agents to autonomously enhance their performance without external human feedback. Our method, Juxtaposed Outcomes for Simulation Harvesting (JOSH), is a self-alignment algorithm that leverages a sparse reward simulation environment to extract ideal behaviors and further train the LLM on its own outputs. We present ToolWOZ, a sparse reward tool-calling simulation environment derived from MultiWOZ. We demonstrate that models trained with JOSH, both small and frontier, significantly improve tool-based interactions while preserving general model capabilities across diverse benchmarks. Our code and data are publicly available on GitHub.
Supplementary Material: zip
Primary Area: unsupervised, self-supervised, semi-supervised, and supervised representation learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 11167
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview