Abstract: To apply reinforcement learning to safety-critical applications, we ought to provide safety guarantees during both policy training and deployment. In this work, we present theoretical results that place a bound on the probability of violating a safety property for a new task-specific policy in a model-free, episodic setting. This bound, based on a maximum policy ratio computed with respect to a 'safe' base policy, can also be applied to temporally-extended properties (beyond safety) and to robust control problems. To utilize these results, we introduce SPoRt, which provides a data-driven method for computing this bound for the base policy using the scenario approach, and includes Projected PPO, a new projection-based approach for training the task-specific policy while maintaining a user-specified bound on property violation. SPoRt thus enables users to trade off safety guarantees against task-specific performance. Complementing our theoretical results, we present experimental results demonstrating this trade-off and comparing the theoretical bound to posterior bounds derived from empirical violation rates.
External IDs:dblp:journals/corr/abs-2504-06386
Loading