RILe: Reinforced Imitation Learning

Published: 28 Feb 2025, Last Modified: 17 Apr 2025WRL@ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Track: full paper
Keywords: Inverse Reinforcement Learning, Imitation Learning
TL;DR: We propose Reinforced Imitation Learning (RILe), a trainer-student framework that learns a dynamic reward function using reinforcement learning to improve imitation learning in high-dimensional tasks
Abstract: Acquiring complex behaviors is essential for artificially intelligent agents, yet learning these behaviors in high-dimensional settings poses a significant challenge due to the vast search space. Traditional reinforcement learning (RL) requires extensive manual effort for reward function engineering. Inverse reinforcement learning (IRL) uncovers reward functions from expert demonstrations but relies on an iterative process that is often computationally expensive. Imitation learning (IL) provides a more efficient alternative by directly comparing an agent’s actions to expert demonstrations; however, in high-dimensional environments, such direct comparisons offer insufficient feedback for effective learning. We introduce RILe (Reinforced Imitation Learning), a framework that combines the strengths of imitation learning and inverse reinforcement learning to learn a dense reward function efficiently and achieve strong performance in high-dimensional tasks. RILe employs a novel trainer–student framework: the trainer learns an adaptive reward function, and the student uses this reward signal to imitate expert behaviors. By dynamically adjusting its guidance as the student evolves, the trainer provides nuanced feedback across different phases of learning. Our framework produces high-performing policies in high-dimensional tasks where direct imitation fails to replicate complex behaviors. We validate RILe in challenging robotic locomotion tasks, demonstrating that it significantly outperforms existing methods and achieves near-expert performance across multiple settings.
Presenter: ~Berat_Mert_Albaba1
Format: Yes, the presenting author will attend in person if this work is accepted to the workshop.
Funding: Yes, the presenting author of this submission falls under ICLR’s funding aims, and funding availability would significantly influence their ability to attend the workshop in person.
Anonymization: This submission has been anonymized for double-blind review via the removal of identifying information such as names, affiliations, and identifying URLs.
Submission Number: 40
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview