Keywords: Bayesian optimization, constrained Bayesian optimization, constrained expected improvement, simple regret, convergence analysis
TL;DR: We present the first theoretical convergence rates for constrained expected improvement, one of the most popular constrained Bayesian optimization methods.
Abstract: Constrained Bayesian optimization (CBO) methods have seen significant success in black-box optimization with constraints. One of the most commonly used CBO methods is the constrained expected improvement (CEI) algorithm. CEI is a natural extension of expected improvement (EI) when constraints are incorporated. However, the theoretical convergence rate of CEI has not been established. In this work, we study the convergence rate of CEI by analyzing its simple regret upper bound. First, we show that when the objective function $f$ and constraint function $c$ are assumed to each lie in a reproducing kernel Hilbert space (RKHS), CEI achieves the convergence rates of $\mathcal{O} \left(t^{-\frac{1}{2}}\log^{\frac{d+1}{2}}(t) \right) \ \text{and }\ \mathcal{O}\left(t^{\frac{-\nu}{2\nu+d}} \log^{\frac{\nu}{2\nu+d}}(t)\right)$ for the commonly used squared exponential and Matérn kernels, respectively. Second, we show that when $f$ and $c$ are assumed to be sampled from Gaussian processes (GPs), CEI achieves the same convergence rates with a high probability. Numerical experiments are performed to validate the theoretical analysis.
Supplementary Material: zip
Primary Area: Theory (e.g., control theory, learning theory, algorithmic game theory)
Submission Number: 17985
Loading