Keywords: loss of plasticity, plasticity, continual learning, online learning
TL;DR: We propose a novel weight regularization method for recovering plasticity and improving generalization capability of the neural networks.
Abstract: Recent studies have shown that as training progresses, neural networks gradually lose their capacity to learn new information, a phenomenon known as plasticity loss. An unbounded weight growth is one of the main causes of plasticity loss. Furthermore, it harms generalization capability and disrupts optimization dynamics. Re-initializing the network can be a solution, but it results in the loss of learned information, leading to performance drops. In this paper, we propose Soft Weight Rescaling (SWR), a novel approach that prevents unbounded weight growth without losing information. SWR recovers the plasticity of the network by simply scaling down the weight at each step of the learning process. We theoretically prove that SWR bounds weight magnitude and balances weight magnitude between layers. Our experiment shows that SWR improves performance on warm-start learning, continual learning, and single-task learning setups on standard image classification benchmarks.
Primary Area: transfer learning, meta learning, and lifelong learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 14266
Loading