LLM at Network Edge: A Layer-wise Efficient Federated Fine-tuning Approach

Published: 18 Sept 2025, Last Modified: 29 Oct 2025NeurIPS 2025 posterEveryoneRevisionsBibTeXCC BY-NC 4.0
Keywords: federated learning, large language model, fine-tuning
Abstract: Fine-tuning large language models (LLMs) poses significant computational burdens, especially in federated learning (FL) settings. We introduce Layer-wise Efficient Federated Fine-tuning (LEFF), a novel method designed to enhance the efficiency of FL fine-tuning while preserving model performance and minimizing client-side computational overhead. LEFF strategically selects layers for fine-tuning based on client computational capacity, thereby mitigating the straggler effect prevalent in heterogeneous environments. Furthermore, LEFF incorporates an importance-driven layer sampling mechanism, prioritizing layers with greater influence on model performance. Theoretical analysis demonstrates that LEFF achieves a convergence rate of $\mathcal{O}(1/\sqrt{T})$. Extensive experiments on diverse datasets demonstrate that LEFF attains superior computational efficiency and model performance compared to existing federated fine-tuning methods, particularly under heterogeneous conditions.
Primary Area: Deep learning (e.g., architectures, generative models, optimization for deep networks, foundation models, LLMs)
Submission Number: 11247
Loading