Single Motion Diffusion

Published: 16 Jan 2024, Last Modified: 11 Mar 2024ICLR 2024 spotlightEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Deep Learning, Motion synthesis, Animation, Single Instance Learning, Generative models
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: We present a model designed to learn the internal motifs of a single motion sequence with arbitrary topology and synthesize diverse motions that are faithful to the learned motifs.
Abstract: Synthesizing realistic animations of humans, animals, and even imaginary creatures, has long been a goal for artists and computer graphics professionals. Compared to the imaging domain, which is rich with large available datasets, the number of data instances for the motion domain is limited, particularly for the animation of animals and exotic creatures (e.g., dragons), which have unique skeletons and motion patterns. In this work, we introduce SinMDM, a Single Motion Diffusion Model. It is designed to learn the internal motifs of a single motion sequence with arbitrary topology and synthesize a variety of motions of arbitrary length that remain faithful to the learned motifs. We harness the power of diffusion models and present a denoising network explicitly designed for the task of learning from a single input motion. SinMDM is crafted as a lightweight architecture, which avoids overfitting by using a shallow network with local attention layers that narrow the receptive field and encourage motion diversity. Our work applies to multiple contexts, including spatial and temporal in-betweening, motion expansion, style transfer, and crowd animation. Our results show that SinMDM outperforms existing methods both qualitatively and quantitatively. Moreover, while prior network-based approaches require additional training for different applications, SinMDM supports these applications during inference. Our project page, which includes links to the code and trained models, is accessible at https://sinmdm.github.io/SinMDM-page.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: zip
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: generative models
Submission Number: 1777
Loading