Keywords: Depth Completion, Gaussian Belief Propagation, Markov Random Fields, Deep Neural Networks
Abstract: Depth completion aims to predict a dense depth map from a color image with sparse depth measurements. Although deep learning methods have achieved state-of-the-art (SOTA), effectively handling the sparse and irregular nature of input depth data in deep networks remains a significant challenge, often limiting performance, especially under high sparsity. To overcome this limitation, we introduce the Gaussian Belief Propagation Network (GBPN), a novel hybrid framework synergistically integrating deep learning with probabilistic graphical models for end-to-end depth completion. Specifically, a scene-specific Markov Random Field (MRF) is dynamically constructed by the Graphical Model Construction Network (GMCN), and then inferred via Gaussian Belief Propagation (GBP) to yield the dense depth distribution. Crucially, the GMCN learns to construct not only the data-dependent potentials of MRF but also its structure by predicting adaptive non-local edges, enabling the capture of complex, long-range spatial dependencies. Furthermore, we enhance GBP with a serial \& parallel message passing scheme, designed for effective information propagation, particularly from sparse measurements. Extensive experiments demonstrate that GBPN achieves SOTA performance on the NYUv2 and KITTI benchmarks. Evaluations across varying sparsity levels highlight GBPN's superior performance and notable robustness.
Primary Area: applications to computer vision, audio, language, and other modalities
Submission Number: 18865
Loading