The Dual Power of Interpretable Token Embeddings: Jailbreaking Attacks and Defenses for Diffusion Model Unlearning

Published: 30 Sept 2025, Last Modified: 30 Sept 2025Mech Interp Workshop (NeurIPS 2025) PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: AI Safety, Applications of interpretability, Diffusion models
TL;DR: We show that harmful concepts persist in unlearned diffusion models as a linear combination of implicit concepts, propose an interpretable jailbreak attack to expose them, and introduce a defense to mitigate these vulnerabilities.
Abstract: Despite the remarkable generation capabilities of diffusion models, recent studies have shown that they can memorize and create harmful content when given specific text prompts. Although fine-tuning approaches have been developed to mitigate this issue by unlearning harmful concepts, these methods can be easily circumvented through jailbreaking attacks. This implies that the harmful concept has not been fully erased from the model. However, existing jailbreaking attack methods, while effective, lack interpretability regarding why unlearned models still retain the concept, thereby hindering the development of defense strategies. In this work, we address these limitations by proposing an attack method that learns an orthogonal set of interpretable attack token embeddings. The attack token embeddings can be decomposed into human-interpretable textual elements, revealing that unlearned models still retain the target concept through implicit textual components. Furthermore, these attack token embeddings are powerful and transferable across text prompts, initial noises, and unlearned models, emphasizing that unlearned models are more vulnerable than expected. Finally, building on the insights from our interpretable attack, we develop a defense method to protect unlearned models against both our proposed and existing jailbreaking attacks. Extensive experimental results demonstrate the effectiveness of our attack and defense strategies.
Submission Number: 87
Loading