Robust Preference Optimization through Reward Model Distillation

TMLR Paper3553 Authors

24 Oct 2024 (modified: 02 Nov 2024)Under review for TMLREveryoneRevisionsBibTeXCC BY 4.0
Abstract: Language model (LM) post-training (or alignment) involves maximizing a reward function that is derived from preference annotations. Direct Preference Optimization (DPO) is a popular offline alignment method that trains a policy directly on preference data without the need to train a reward model or apply reinforcement learning. However, the empirical evidence suggests that DPO typically assigns implicit rewards that overfit, and trend towards infinite magnitude. This frequently leads to degenerate policies, sometimes causing even the probabilities of the preferred generations to go to zero. In this work, we analyze this phenomenon and propose distillation to get a better proxy for the true preference distribution over generation pairs: we train the LM such that its induced implicit reward, i.e., the scaled log-likelihood ratio of the model to the reference model, matches an explicit reward model trained on the preference data. Moreover, to account for uncertainty in the reward model we are distilling from, we optimize against a family of reward models that, as a whole, is likely to include at least one reasonable proxy for the preference distribution. Our results show that distilling from such a family of reward models leads to improved robustness to distribution shift in preference annotations, while preserving the simple supervised nature of DPO.
Submission Length: Regular submission (no more than 12 pages of main content)
Assigned Action Editor: ~Ruoyu_Sun1
Submission Number: 3553
Loading