Abstract: In this paper, we propose ZipAR, a training-free, plug-and-play parallel decoding framework for accelerating autoregressive (AR) visual generation. The motivation stems from the observation that images exhibit local structures, and spatially distant regions tend to have minimal interdependence. Given a partially decoded set of visual tokens, in addition to the original next-token prediction scheme in the row dimension, the tokens corresponding to spatially adjacent regions in the column dimension can be decoded in parallel. To ensure alignment with the contextual requirements of each token, we employ an adaptive local window assignment scheme with rejection sampling analogous to speculative decoding. By decoding multiple tokens in a single forward pass, the number of forward passes required to generate an image is significantly reduced, resulting in a substantial improvement in generation efficiency. Experiments demonstrate that ZipAR can reduce the number of model forward passes by up to 91% on the Emu3-Gen model without requiring any additional retraining.
Loading