Rate-Distortion Optimized Post-Training Quantization for Learned Image CompressionDownload PDF

Published: 01 Feb 2023, Last Modified: 14 Oct 2024Submitted to ICLR 2023Readers: Everyone
Keywords: learned image compression, post-training quantization, rate-distortion optimization
Abstract: Quantizing floating-point neural network to its fixed-point representation is crucial for Learned Image Compression (LIC) because it ensures the decoding consistency for interoperability and reduces space-time complexity for implementation. Existing solutions often have to retrain the network for model quantization which is time consuming and impractical. This work suggests the use of Post-Training Quantization (PTQ) to directly process pretrained, off-the-shelf LIC models. We theoretically prove that minimizing the mean squared error (MSE) in PTQ is sub-optimal for compression task and thus develop a novel Rate-Distortion (R-D) Optimized PTQ (RDO-PTQ) to best retain the compression performance. Such RDO-PTQ just needs to compress few images (e.g., 10) to optimize the transformation of weight, bias, and activation of underlying LIC model from its native 32-bit floating-point (FP32) format to 8-bit fixed-point (INT8) precision for fixed-point inference onwards. Experiments reveal outstanding efficiency of the proposed method on different LICs, showing the closest coding performance to their floating-point counterparts. And, our method is a lightweight and plug-and-play approach without any need of model retraining which is attractive to practitioners.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Applications (eg, speech processing, computer vision, NLP)
Supplementary Material: zip
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 3 code implementations](https://www.catalyzex.com/paper/rate-distortion-optimized-post-training/code)
21 Replies

Loading