A Globally Convergent Algorithm for Neural Network Parameter Optimization Based on Difference-of-Convex Functions
Abstract: We propose an algorithm for optimizing the parameters of single hidden layer neural networks.
Specifically, we derive a blockwise difference-of-convex (DC) functions representation
of the objective function. Based on the latter, we propose a block coordinate descent (BCD)
approach that we combine with a tailored difference-of-convex functions algorithm (DCA).
We prove global convergence of the proposed algorithm. Furthermore, we mathematically
analyze the convergence rate of parameters and the convergence rate in value (i.e., the training
loss). We give conditions under which our algorithm converges linearly or even faster
depending on the local shape of the loss function. We confirm our theoretical derivations
numerically and compare our algorithm against state-of-the-art gradient-based solvers in
terms of both training loss and test loss.
Submission Length: Long submission (more than 12 pages of main content)
Assigned Action Editor: ~Lechao_Xiao2
License: Creative Commons Attribution 4.0 International (CC BY 4.0)
Submission Number: 1635
Loading