TDR-CL: Targeted Doubly Robust Collaborative Learning for Debiased RecommendationsDownload PDF

Published: 01 Feb 2023, Last Modified: 02 Mar 2023ICLR 2023 posterReaders: Everyone
Keywords: Recommender System, Bias, Debias, Doubly Robust
TL;DR: This paper proposes a principled approach that can effectively reduce the bias and variance simultaneously compared to existing DR estimators for debiased recommendations.
Abstract: Bias is a common problem inherent in recommender systems, which is entangled with users' preferences and poses a great challenge to unbiased learning. For debiasing tasks, the doubly robust (DR) method and its variants show superior performance due to the double robustness property, that is, DR is unbiased when either imputed errors or learned propensities are accurate. However, our theoretical analysis reveals that DR usually has a large variance. Meanwhile, DR would suffer unexpectedly large bias and poor generalization caused by inaccurate imputed errors and learned propensities, which usually occur in practice. In this paper, we propose a principled approach that can effectively reduce the bias and variance simultaneously for existing DR approaches when the error imputation model is misspecified. In addition, we further propose a novel semi-parametric collaborative learning approach that decomposes imputed errors into parametric and nonparametric parts and updates them collaboratively, resulting in more accurate predictions. Both theoretical analysis and experiments demonstrate the superiority of the proposed methods compared with existing debiasing methods.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Applications (eg, speech processing, computer vision, NLP)
Supplementary Material: zip
10 Replies