CommonKV: Compressing KV Cache with Cross-layer Parameter Sharing

ICLR 2026 Conference Submission16049 Authors

19 Sept 2025 (modified: 08 Oct 2025)ICLR 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Efficient LLM, KV Cache Compression
Abstract: Large Language Models (LLMs) confront significant memory challenges due to the escalating KV cache with increasing sequence length. As a crucial technique, existing cross-layer KV cache sharing methods either necessitate modified model architectures with subsequent pre-training or incur significant performance degradation at high compression rates. To mitigate these challenges, we propose CommonKV, a training-free method for cross-layer KV cache compression through adjacent parameters sharing. Inspired by the high similarity observed in cross-layer hidden states, we utilize Singular Value Decomposition (SVD) to achieve weight sharing across adjacent parameters, resulting in a more easily mergeable latent KV cache. Furthermore, we also introduce an adaptive budget allocation strategy. It dynamically assigns compression budgets based on cosine similarity, ensuring that dissimilar caches are not over-compressed. Experiments across multiple backbone models and benchmarks including LongBench and Ruler demonstrate that the proposed method consistently outperforms other low-rank and cross-layer approaches at various compression ratios. Moreover, we find that the benefits of CommonKV are orthogonal to other quantization and eviction methods. By integrating these approaches, we can ultimately achieve a 98% compression ratio without significant performance loss.
Supplementary Material: zip
Primary Area: applications to computer vision, audio, language, and other modalities
Submission Number: 16049
Loading