Keywords: pac learning, learning halfspaces, massart noise, sgd, robust learning
TL;DR: We give a simple efficient algorithm for learning halfspaces with Massart noise.
Abstract: We study the problem of PAC learning $\gamma$-margin halfspaces with Massart noise. We propose a simple proper learning algorithm, the Perspectron, that has sample complexity $\widetilde{O}((\epsilon\gamma)^{-2})$ and achieves classification error at most $\eta+\epsilon$ where $\eta$ is the Massart noise rate.
Prior works (DGT19, CKMY20) came with worse sample complexity
guarantees (in both $\epsilon$ and $\gamma$) or could only
handle random classification noise (DDKWZ23,KITBMV23)--- a much milder noise assumption.
We also show that our results extend to the more challenging setting of learning generalized linear models with a known link function under Massart noise, achieving a similar sample complexity to the halfspace case. This significantly improves upon the prior state-of-the-art in this setting due to CKMY20, who introduced this model.
Primary Area: Learning theory
Submission Number: 18764
Loading