Keywords: Diffusion models, Open-vocabulary semantic segmentation, Image generation
TL;DR: We uncover the emergent open-vocabulary semantic segmentation capability of diffusion transformers and show that amplifying this property enhances both segmentation and image generation.
Abstract: Text-to-image diffusion models excel at translating language prompts into photorealistic images by implicitly grounding textual concepts through their cross-modal attention mechanisms. Recent multi-modal diffusion transformers extend this by introducing joint self-attention over concatenated image and text tokens, enabling richer and more scalable cross-modal alignment. However, a detailed understanding of how and where these attention maps contribute to image generation remains limited. In this paper, we introduce Seg4Diff (Segmentation for Diffusion), a systematic framework for analyzing the attention structures of MM-DiT, with a focus on how specific layers propagate semantic information from text to image. Through comprehensive analysis, we identify a semantic grounding expert layer, a specific MM-DiT block that consistently aligns text tokens with spatially coherent image regions, naturally producing high-quality semantic segmentation masks. We further demonstrate that applying a lightweight fine-tuning scheme with mask-annotated image data enhances the semantic grouping capabilities of these layers and thereby improves both segmentation performance and generated image fidelity. Our findings demonstrate that semantic grouping is an emergent property of diffusion transformers and can be selectively amplified to advance both segmentation and generation performance, paving the way for unified models that bridge visual perception and generation.
Supplementary Material:  zip
Primary Area: Deep learning (e.g., architectures, generative models, optimization for deep networks, foundation models, LLMs)
Submission Number: 10805
Loading