On the Forward Invariance of Neural ODEsDownload PDF

22 Sept 2022 (modified: 12 Mar 2024)ICLR 2023 Conference Withdrawn SubmissionReaders: Everyone
Keywords: Neural ODE, Forward Invariance, Specification Guarantees
TL;DR: This paper proposes to achieve specification guarantees in the output space of neural ODEs with invariance set propagation.
Abstract: To ensure robust and trustworthy decision-making, it is highly desirable to enforce constraints over a neural network's parameters and its inputs automatically by back-propagating output specifications. This way, we can guarantee that the network makes reliable decisions under perturbations. Here, we propose a new method for achieving a class of specification guarantees for neural Ordinary Differentiable Equations (ODEs) by using invariance set propagation. An invariance of a neural ODE is defined as an output specification, such as to satisfy mathematical formulae, physical laws, and system safety. We use control barrier functions to specify the invariance of a neural ODE on the output layer and propagate it back to the input layer. Through the invariance backpropagation, we map output specifications onto constraints on the neural ODE parameters or its input. The satisfaction of the corresponding constraints implies the satisfaction of output specifications. This allows us to achieve output specification guarantees by changing the input or parameters while maximally preserving the model performance. We demonstrate the invariance propagation on a comprehensive series of representation learning tasks, including spiral curve regression, autoregressive modeling of joint physical dynamics, convexity portrait of a function, and safe neural control of collision avoidance for autonomous vehicles.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Deep Learning and representational learning
Supplementary Material: zip
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 1 code implementation](https://www.catalyzex.com/paper/arxiv:2210.04763/code)
9 Replies

Loading