Keywords: PAC-Bayes, Probabilistic Neural Netowrks, Neural Tangent Kernel
Abstract: In addition to being a successful generalization bound analysis tool, the PAC-Bayesian bound can also be incorporated into an objective function to train a probabilistic neural network, which we refer to simply as {\it PAC-Bayesian Learning}. PAC-Bayesian learning has been proven to be able to achieve a competitive expected test set error numerically, while providing a tight generalization bound in practice, through gradient descent training. Despite its empirical success, the theoretical analysis of deep PAC-Bayesian learning for neural networks is rarely explored. To this end, this paper proposes a theoretical convergence and generalization analysis for PAC-Bayesian learning. For a deep and wide probabilistic neural network, we show that when PAC-Bayesian learning is applied, the convergence result corresponds to solving a kernel ridge regression when the probabilistic neural tangent kernel (PNTK) is used as its kernel. Based on this finding, we further obtain an analytic and guaranteed PAC-Bayesian generalization bound for the first time, which is an improvement over the Rademacher complexity-based bound for deterministic neural networks. Finally, drawing insight from our theoretical results, we propose a proxy measure for efficient hyperparameter selection, which is proven to be time-saving on various benchmarks.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Theory (eg, control theory, learning theory, algorithmic game theory)
Supplementary Material: zip
14 Replies
Loading