How and how well do diffusion models improve adversarial robustness?

26 Sept 2024 (modified: 05 Feb 2025)Submitted to ICLR 2025EveryoneRevisionsBibTeXCC BY 4.0
Keywords: diffusion models, adversarial purification, robustness
Abstract: Recent findings suggest that diffusion models significantly enhance empirical adversarial robustness. While some intuitive explanations have been proposed, the precise mechanisms underlying these improvements remain unclear. In this work, we systematically investigate how and how well do diffusion models improve adversarial robustness. First, we observe that diffusion models intriguingly increase—rather than decrease—the $\ell_p$ distances to clean samples. This is the opposite of what was believed previously. Second, we find that the purified images are heavily influenced by the internal randomness of diffusion models. To properly evaluate the robustness of systems with inherent randomness, we introduce the concept of fuzzy adversarial robustness, and find that empirically a substantial fraction of adversarial examples are fuzzy in nature. Finally, by leveraging a hyperspherical cap model of adversarial regions, we show that diffusion models increase robustness by dramatically compressing the image space. Our findings provide novel insights into the mechanisms behind the robustness improvements of diffusion-model-based purification and offer guidance for the development of more efficient adversarial purification systems.
Primary Area: alignment, fairness, safety, privacy, and societal considerations
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 5822
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview