Disentangled Wasserstein Autoencoder for T-Cell Receptor Engineering

Published: 21 Sept 2023, Last Modified: 02 Nov 2023NeurIPS 2023 posterEveryoneRevisionsBibTeX
Keywords: protein engineering, disentangled representation, T cell receptor
Abstract: In protein biophysics, the separation between the functionally important residues (forming the active site or binding surface) and those that create the overall structure (the fold) is a well-established and fundamental concept. Identifying and modifying those functional sites is critical for protein engineering but computationally non-trivial, and requires significant domain knowledge. To automate this process from a data-driven perspective, we propose a disentangled Wasserstein autoencoder with an auxiliary classifier, which isolates the function-related patterns from the rest with theoretical guarantees. This enables one-pass protein sequence editing and improves the understanding of the resulting sequences and editing actions involved. To demonstrate its effectiveness, we apply it to T-cell receptors (TCRs), a well-studied structure-function case. We show that our method can be used to alter the function of TCRs without changing the structural backbone, outperforming several competing methods in generation quality and efficiency, and requiring only 10\% of the running time needed by baseline models. To our knowledge, this is the first approach that utilizes disentangled representations for TCR engineering.
Supplementary Material: pdf
Submission Number: 15212
Loading