Keywords: text to image generation, visual instruction generation
TL;DR: We propose a training-free framework for long-horizon visual instruction generation with logic and attribute self-reflection.
Abstract: Visual instructions for long-horizon tasks are crucial as they intuitively clarify complex concepts and enhance retention across extended steps.
Directly generating a series of images using text-to-image models without considering the context of previous steps results in inconsistent images, increasing cognitive load. Additionally, the generated images often miss objects or the attributes such as color, shape, and state of the objects are inaccurate.
To address these challenges, we propose LIGER, the first training-free framework for Long-horizon Instruction GEneration with logic and attribute self-Reflection. LIGER first generates a draft image for each step with the historical prompt and visual memory of previous steps. This step-by-step generation approach maintains consistency between images in long-horizon tasks. Moreover, LIGER utilizes various image editing tools to rectify errors including wrong attributes, logic errors, object redundancy, and identity inconsistency in the draft images. Through this self-reflection mechanism, LIGER improves the logic and object attribute correctness of the images.
To verify whether the generated images assist human understanding, we manually curated a new benchmark consisting of various long-horizon tasks. Human-annotated ground truth expressions reflect the human-defined criteria for how an image should appear to be illustrative.
Experiments demonstrate the visual instructions generated by LIGER are more comprehensive compared with baseline methods. The code and dataset will be available once accepted.
Primary Area: applications to computer vision, audio, language, and other modalities
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 274
Loading