Gathering and Exploiting Higher-Order Information when Training Large Structured Models

23 Sept 2024 (modified: 05 Feb 2025)Submitted to ICLR 2025EveryoneRevisionsBibTeXCC BY 4.0
Keywords: neural networks, Hessian, learning rate, projections, optimization
TL;DR: Cheap computation of tensors related to the higher-order derivatives of the loss, and application to second-order optimization of neural networks.
Abstract: When training large models, such as neural networks, the full derivatives of order 2 and beyond are usually inaccessible, due to their computational cost. This is why, among the second-order optimization methods, it is very common to bypass the computation of the Hessian by using first-order information, such as the gradient of the parameters (e.g., quasi-Newton methods) or the activations (e.g., K-FAC). In this paper, we focus on the exact and explicit computation of projections of the Hessian and higher-order derivatives on well-chosen subspaces, which are relevant for optimization. Namely, for a given partition of the set of parameters, it is possible to compute tensors which can be seen as "higher-order derivatives according to the partition", at a reasonable cost as long as the number of subsets of the partition remains small. Then, we propose an optimization method exploiting these tensors at order 2 and 3 with several interesting properties, including: it outputs a learning rate per subset of parameters, which can be used for hyperparameter tuning; it takes into account long-range interactions between the layers of the trained neural network, which is usually not the case in similar methods (e.g., K-FAC); the trajectory of the optimization is invariant under affine layer-wise reparameterization.
Supplementary Material: zip
Primary Area: unsupervised, self-supervised, semi-supervised, and supervised representation learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 3114
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview