Investigating the Effectiveness of HyperTuning via Gisting

ICLR 2025 Conference Submission1440 Authors

18 Sept 2024 (modified: 13 Oct 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: hypernetworks, llm, parameter-efficient fine-tuning, prefix tuning
TL;DR: We use Gisting to train Llama-2 to efficient generate parameters for model adaptation
Abstract: Gisting (Mu et al., 2023) is a simple method for training models to compress information into fewer token representations using a modified attention mask, and can serve as an economical approach to training Transformer-based hypernetworks. We introduce HyperLlama, a set of Gisting-based hypernetworks built on Llama-2 models that generates task-specific soft prefixes based on few-shot inputs. In experiments across P3, Super-NaturalInstructions and Symbol Tuning datasets, we show that HyperLlama models can effectively compress information from few-shot examples into soft prefixes. However, they still underperform multi-task fine-tuned language models with full attention over few-shot in-context examples. We also show that HyperLlama-generated soft prefixes can serve as better initializations for further prefix tuning. Overall, Gisting-based hypernetworks are economical and easy to implement, but have mixed empirical performance.
Primary Area: transfer learning, meta learning, and lifelong learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 1440
Loading