IgCraft: A versatile sequence generation framework for antibody discovery and engineering

Published: 06 Mar 2025, Last Modified: 26 Apr 2025GEMEveryoneRevisionsBibTeXCC BY 4.0
Track: Machine learning: computational method and/or computational results
Nature Biotechnology: Yes
Keywords: Antibody, Bayesian Flow Networks, Generative Model
TL;DR: A multi-purpose human antibody sequence generative model that can flexibly incorporate structural data.
Abstract: Designing antibody sequences to better resemble those observed in natural human repertoires is a key challenge in biologics development. We introduce IgCraft: a multi-purpose model for paired human antibody sequence generation, built on Bayesian Flow Networks. IgCraft presents one of the first unified generative mod- eling frameworks capable of addressing multiple antibody sequence design tasks with a single model, including unconditional sampling, sequence inpainting, in- verse folding, and CDR motif scaffolding. Our approach achieves competitive results across the full spectrum of these tasks while constraining generation to the space of human antibody sequences, exhibiting particular strengths in CDR motif scaffolding (grafting) where we achieve state-of-the-art performance in terms of humanness and preservation of structural properties. By integrating previously separate tasks into a single scalable generative model, IgCraft provides a versatile platform for sampling human antibody sequences under a variety of contexts relevant to antibody discovery and engineering. Model code and weights are publicly available at https://github.com/mgreenig/IgCraft.
Anonymization: This submission has been anonymized for double-blind review via the removal of identifying information such as names, affiliations, and identifying URLs.
Presenter: ~Matthew_Greenig1
Format: Yes, the presenting author will attend in person if this work is accepted to the workshop.
Funding: No, the presenting author of this submission does *not* fall under ICLR’s funding aims, or has sufficient alternate funding.
Submission Number: 110
Loading