Keywords: anomaly detection, hyper-parameter optimization
Abstract: Unsupervised anomaly detection (UAD) has important applications in diverse fields such as manufacturing industry and medical diagnosis. In the past decades, although numerous insightful and effective UAD methods have been proposed, it remains a huge challenge to tune the hyper-parameters of each method and select the most appropriate method among many candidates for a specific dataset, due to the absence of labeled anomalies in the training phase of UAD methods and the high diversity of real datasets. In this work, we aim to address this challenge, so as to make UAD more practical and reliable. We propose two internal evaluation metrics, relative-top-median and expected-anomaly-gap, and one semi-internal evaluation metric, normalized pseudo discrepancy (NPD), as surrogate functions of the expected model performance on unseen test data. For instance, NPD measures the discrepancy between the anomaly scores of a validation set drawn from the training data and a validation set drawn from an isotropic Gaussian. NPD is simple and hyper-parameter-free and is able to compare different UAD methods, and its effectiveness is theoretically analyzed. We integrate the three metrics with Bayesian optimization to effectively optimize the hyper-parameters of UAD models. Extensive experiments on 38 datasets show the effectiveness of our methods.
Supplementary Material: zip
Primary Area: unsupervised, self-supervised, semi-supervised, and supervised representation learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 4385
Loading