SSP: Self-Supervised Prompting for Cross-Lingual Transfer to Low-Resource Languages using Large Language Models

ACL ARR 2024 June Submission4603 Authors

16 Jun 2024 (modified: 09 Aug 2024)ACL ARR 2024 June SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Abstract: Recently, very large language models (LLMs) have shown exceptional performance on several English NLP tasks with just in-context learning (ICL), but their utility in other languages is still underexplored. We investigate their effectiveness for NLP tasks in low-resource languages (LRLs), especially in the setting of *zero-labelled* cross-lingual transfer (0-CLT), where no labelled training data for the target language is available -- however training data from one or more related medium-resource languages (MRLs) is utilized, alongside the available unlabeled test data for a target language. We introduce Self-Supervised Prompting (SSP), a novel ICL approach tailored for the 0-CLT setting. SSP is based on the key observation that LLMs output more accurate labels if in-context exemplars are from the target language (even if their labels are slightly noisy). To operationalize this, since target language training data is not available in 0-CLT, SSP operates in two stages. In Stage I, using source MRL training data, target language's test data is noisily labeled. In Stage II, these noisy test data points are used as exemplars in ICL for further improved labelling. Additionally, our implementation of SSP uses a novel Integer Linear Programming (ILP)-based exemplar selection that balances similarity, prediction confidence (when available) and label coverage. Experiments on three tasks and eleven LRLs (from three regions) demonstrate that SSP strongly outperforms existing SOTA fine-tuned and prompting-based baselines in 0-CLT setup.
Paper Type: Long
Research Area: Multilingualism and Cross-Lingual NLP
Research Area Keywords: Low resource languages, Cross-lingual Transfer, LLMs
Contribution Types: Model analysis & interpretability, NLP engineering experiment, Approaches to low-resource settings
Languages Studied: African, Germanic, Indigenous languages of Americas
Submission Number: 4603
Loading