Hierarchical Few-Shot Imitation with Skill Transition ModelsDownload PDF

Jun 13, 2021 (edited Jul 18, 2021)URL 2021 PosterReaders: Everyone
  • Keywords: behavioral priors, skill extraction, imitation learning, few-shot learning
  • TL;DR: We introduce a new algorithm (FIST) which extracts skills from offline data and adapts them in few-shot to solve unseen complex long-horizon tasks by utilizing an inverse skill dynamics model and semi-parametric imitation.
  • Abstract: A desirable property of autonomous agents is the ability to both solve long-horizon problems and generalize to unseen tasks. Recent advances in data-driven skill learning have shown that extracting behavioral priors from offline data can enable agents to solve challenging long-horizon tasks with reinforcement learning. However, generalization to tasks unseen during behavioral prior training remains an outstanding challenge. To this end, we present Few-shot Imitation with Skill Transition Models (FIST), an algorithm that extracts skills from offline data and utilizes them to generalize to unseen tasks given a few downstream demonstrations. FIST learns an inverse skill dynamics model and utilizes a semi-parametric approach for imitation. We show that FIST is capable of generalizing to new tasks and substantially outperforms prior baselines in navigation experiments requiring traversing unseen parts of a large maze and 7-DoF robotic arm experiments requiring manipulating previously unseen objects in a kitchen.
1 Reply

Loading