ESS-Flow: Training-free guidance of flow-based models as inference in source space

ICLR 2026 Conference Submission18339 Authors

19 Sept 2025 (modified: 08 Oct 2025)ICLR 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: generative models, guidance, inference, inverse problems
Abstract: Guiding pretrained flow-based generative models for conditional generation or to produce samples with desired target properties enables solving diverse tasks without retraining on paired data. We present ESS-Flow, a gradient-free method that leverages the typically Gaussian prior of the source distribution in flow-based models to perform Bayesian inference directly in the source space using Elliptical Slice Sampling. ESS-Flow only requires forward passes through the generative model and observation process, no gradient or Jacobian computations, and is applicable even when gradients are unreliable or unavailable, such as with simulation-based observations or quantization in the generation or observation process. We demonstrate its effectiveness on designing materials with desired target properties and predicting protein structures from sparse inter-residue distance measurements.
Primary Area: probabilistic methods (Bayesian methods, variational inference, sampling, UQ, etc.)
Submission Number: 18339
Loading