Matrix Multiplicative Weights Updates in Quantum Zero-Sum Games: Conservation Laws & RecurrenceDownload PDF

Published: 31 Oct 2022, Last Modified: 13 Oct 2022NeurIPS 2022 AcceptReaders: Everyone
Keywords: online learning in quantum games, Poincare recurrence, dynamical systems, zero-sum games
Abstract: Recent advances in quantum computing and in particular, the introduction of quantum GANs, have led to increased interest in quantum zero-sum game theory, extending the scope of learning algorithms for classical games into the quantum realm. In this paper, we focus on learning in quantum zero-sum games under Matrix Multiplicative Weights Update (a generalization of the multiplicative weights update method) and its continuous analogue, Quantum Replicator Dynamics. When each player selects their state according to quantum replicator dynamics, we show that the system exhibits conservation laws in a quantum-information theoretic sense. Moreover, we show that the system exhibits Poincare recurrence, meaning that almost all orbits return arbitrarily close to their initial conditions infinitely often. Our analysis generalizes previous results in the case of classical games.
TL;DR: We study matrix multiplicative weights update and quantum replicator dynamics in the context of quantum zero-sum games, and show that information conservation and Poincare recurrence holds.
Supplementary Material: zip
18 Replies