LV-Eval: A Balanced Long-Context Benchmark with 5 Length Levels Up to 256K

28 May 2024 (modified: 13 Nov 2024)Submitted to NeurIPS 2024 Track Datasets and BenchmarksEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Large Language Models, Long-Context LLM, Confusing Fact Insertion, Keyword and Phrase Replacement
TL;DR: LV-Eval is a long-context LLM benchmark containing 5 length levels (16/32/64/128/256k), and proposes several benchmark techniques, Confusion Fact Insertion, Keyword&Phrase Replacement, and Keyword-Recall-based Metric.
Abstract: State-of-the-art large language models (LLMs) are now claiming remarkable supported context lengths of 256k or even more. In contrast, the average context lengths of mainstream benchmarks are insufficient (5k-21k), and they suffer from potential knowledge leakage and inaccurate metrics, resulting in biased evaluation. This paper introduces LV-Eval, a challenging long-context benchmark with five length levels (16k, 32k, 64k, 128k, and 256k) reaching up to 256k words. LV-Eval features two main tasks, single-hop QA and multi-hop QA, comprising 11 bilingual datasets. The design of LV-Eval has incorporated three key techniques, namely confusing facts insertion (CFI), keyword and phrase replacement (KPR), and keyword-recall-based metric design. The advantages of LV-Eval include controllable evaluation across context lengths, challenging test instances with confusing facts, mitigated knowledge leakage, and more objective evaluations. We evaluate 10 LLMs on LV-Eval and conduct ablation studies on the techniques used in LV-Eval construction. The results reveal that: (i) Commercial LLMs generally outperform open-source LLMs when evaluated within length levels shorter than their claimed context length. However, their overall performance is surpassed by open-source LLMs with longer context lengths. (ii) Extremely long-context LLMs, such as Yi-6B-200k and Llama3-8B-1M, exhibit a relatively gentle degradation of performance, but their absolute performances may not necessarily be higher than those of LLMs with shorter context lengths. (iii) LLMs' performances can significantly degrade in the presence of confusing information, especially in the pressure test of "needle in a haystack". (iv) Issues related to knowledge leakage and inaccurate metrics introduce bias in evaluation, and these concerns are alleviated in LV-Eval. All datasets and evaluation codes are released at: https://github.com/infinigence/LVEval.
Supplementary Material: zip
Submission Number: 1235
Loading