Can Large Language Models Reason? A Characterization via 3-SAT

26 Sept 2024 (modified: 05 Feb 2025)Submitted to ICLR 2025EveryoneRevisionsBibTeXCC BY 4.0
Keywords: Large Language Models, Logic, Reasoning, Satisfiability, Phase Transitions
TL;DR: We use phase transitions in random 3-SAT to characterize reasoning abilities of LLMs.
Abstract:

Large Language Models (LLMs) have been touted as AI models possessing advanced reasoning abilities. However, recent works have shown that LLMs often bypass true reasoning using shortcuts, sparking skepticism. To study the reasoning capabilities in a principled fashion, we adopt a computational theory perspective and propose an experimental protocol centered on 3-SAT -- the prototypical NP-complete problem lying at the core of logical reasoning and constraint satisfaction tasks. Specifically, we examine the phase transitions in random 3-SAT and characterize the reasoning abilities of LLMs by varying the inherent hardness of the problem instances. Our experimental evidence shows that LLMs are incapable of performing true reasoning, as required for solving 3-SAT problems. Moreover, we observe significant performance variation based on the inherent hardness of the problems -- performing poorly on harder instances and vice versa. Importantly, we show that integrating external reasoners can considerably enhance LLM performance. By following a principled experimental protocol, our study draws concrete conclusions and moves beyond the anecdotal evidence often found in LLM reasoning research.

Primary Area: foundation or frontier models, including LLMs
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 7223
Loading