Keywords: compositional generalization, rule learning, kernel regression, kernel models, relational reasoning, memorization, shortcuts, dataset statistics, norm minimization, implicit regularization, disentanglement
TL;DR: We present a theory of compositional generalization in kernel models with fixed representations and validate it in deep neural networks.
Abstract: Compositional generalization (the ability to respond correctly to novel combinations of familiar components) is thought to be a cornerstone of intelligent behavior. Compositionally structured (e.g. disentangled) representations support this ability; however, the conditions under which they are sufficient for the emergence of compositional generalization remain unclear. To address this gap, we present a theory of compositional generalization in kernel models with fixed, compositionally structured representations. This provides a tractable framework for characterizing the impact of training data statistics on generalization. We find that these models are limited to functions that assign values to each combination of components seen during training, and then sum up these values ("conjunction-wise additivity"). This imposes fundamental restrictions on the set of tasks compositionally structured kernel models can learn, in particular preventing them from transitively generalizing equivalence relations. Even for compositional tasks that they can learn in principle, we identify novel failure modes in compositional generalization (memorization leak and shortcut bias) that arise from biases in the training data. Finally, we empirically validate our theory, showing that it captures the behavior of deep neural networks (convolutional networks, residual networks, and Vision Transformers) trained on a set of compositional tasks with similarly structured data. Ultimately, this work examines how statistical structure in the training data can affect compositional generalization, with implications for how to identify and remedy failure modes in deep learning models.
Primary Area: learning theory
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 12476
Loading