Multi-task Learning for Heterogeneous Multi-source Block-Wise Missing Data

26 Sept 2024 (modified: 05 Feb 2025)Submitted to ICLR 2025EveryoneRevisionsBibTeXCC BY 4.0
Keywords: data integration, disentangled representations, distribution shift, posterior drift
Abstract:

Multi-task learning (MTL) has emerged as an imperative machine learning tool to solve multiple learning tasks simultaneously and has been successfully applied to healthcare, marketing, and biomedical fields. However, in order to borrow information across different tasks effectively, it is essential to utilize both homogeneous and heterogeneous information. Among the extensive literature on MTL, various forms of heterogeneity are presented in MTL problems, such as block-wise, distribution, and posterior heterogeneity. Existing methods, however, struggle to tackle these forms of heterogeneity simultaneously in a unified framework. In this paper, we propose a two-step learning strategy for MTL which addresses the aforementioned heterogeneity. First, we impute the missing blocks using shared representations extracted from homogeneous source across different tasks. Next, we disentangle the mappings between input features and responses into a shared component and a task-specific component, respectively, thereby enabling information borrowing through the shared component. Our numerical experiments and real-data analysis from the ADNI database demonstrate the superior MTL performance of the proposed method compared to a single task learning and other competing methods.

Supplementary Material: zip
Primary Area: unsupervised, self-supervised, semi-supervised, and supervised representation learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 6017
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview