Improving Non-Transferable Representation Learning by Harnessing Content and Style

Published: 16 Jan 2024, Last Modified: 28 Mar 2024ICLR 2024 spotlightEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: non-transferable representation learning, domain adaptation, transfer learning
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: Non-transferable learning (NTL) aims to restrict the generalization of models toward the target domain(s). To this end, existing works learn non-transferable representations by reducing statistical dependence between the source and target domain. However, such statistical methods essentially neglect to distinguish between *styles* and *contents*, leading them to inadvertently fit (i) spurious correlation between *styles* and *labels*, and (ii) fake independence between *contents* and *labels*. Consequently, their performance will be limited when natural distribution shifts occur or malicious intervention is imposed. In this paper, we propose a novel method (dubbed as H-NTL) to understand and advance the NTL problem by introducing a causal model to separately model *content* and *style* as two latent factors, based on which we disentangle and harness them as guidances for learning non-transferable representations with intrinsically causal relationships. Specifically, to avoid fitting spurious correlation and fake independence, we propose a variational inference framework to disentangle the naturally mixed *content factors* and *style factors* under our causal model. Subsequently, based on dual-path knowledge distillation, we harness the disentangled two *factors* as guidances for non-transferable representation learning: (i) we constraint the source domain representations to fit *content factors* (which are the intrinsic cause of *labels*), and (ii) we enforce that the target domain representations fit *style factors* which barely can predict labels. As a result, the learned feature representations follow optimal untransferability toward the target domain and minimal negative influence on the source domain, thus enabling better NTL performance. Empirically, the proposed H-NTL significantly outperforms competing methods by a large margin.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: transfer learning, meta learning, and lifelong learning
Submission Number: 5244
Loading