Symmetry-Constrained Generation of Diverse Low-Bandgap Molecules with Monte Carlo Tree Search

Published: 08 Oct 2024, Last Modified: 03 Nov 2024AI4Mat-NeurIPS-2024EveryoneRevisionsBibTeXCC BY 4.0
Submission Track: Full Paper
Submission Category: AI-Guided Design
Keywords: molecular design, Monte Carlo Tree Search, organic electronics, bandgap, property optimization, TD-DFT
TL;DR: Low-bandgap molecular generation using symmetry-aware fragment decomposition and MCTS generator
Abstract: Organic optoelectronic materials are a promising avenue for next-generation electronic devices due to their solution processability, mechanical flexibility, and tunable electronic properties. In particular, near-infrared (NIR) sensitive molecules have unique applications in night-vision equipment and biomedical imaging. Molecular engineering has played a crucial role in developing non-fullerene acceptors (NFAs) such as the Y-series molecules, which have significantly improved the power conversion efficiency (PCE) of solar cells and enhanced spectral coverage in the NIR region. However, systematically designing molecules with targeted optoelectronic properties while ensuring synthetic accessibility remains a challenge. To address this, we leverage structural priors from domain-focused, patent-mined datasets of organic electronic molecules using a symmetry-aware fragment decomposition algorithm and a fragment-constrained Monte Carlo Tree Search (MCTS) generator. Our approach generates candidates that retain symmetry constraints from the patent dataset, while also exhibiting red-shifted absorption, as validated by TD-DFT calculations.
Submission Number: 42
Loading