QASE Enhanced PLMs: Improved Control in Text Generation for MRCDownload PDF

Anonymous

16 Feb 2024ACL ARR 2024 February Blind SubmissionReaders: Everyone
Abstract: To address the challenges of out-of-control generation in generative models for machine reading comprehension (MRC), we introduce the Question-Attended Span Extraction (QASE) module. Integrated during the fine-tuning of pre-trained generative language models (PLMs), QASE enables these PLMs to match SOTA extractive methods and outperform leading LLMs like GPT-4 in MRC tasks, without significant increases in computational costs.
Paper Type: short
Research Area: Question Answering
Contribution Types: NLP engineering experiment, Approaches low compute settings-efficiency, Publicly available software and/or pre-trained models
Languages Studied: English
0 Replies

Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview