CellVerse: Do Large Language Models Really Understand Cell Biology?

Published: 18 Sept 2025, Last Modified: 30 Oct 2025NeurIPS 2025 Datasets and Benchmarks Track posterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Large Language Models, AI for Science
TL;DR: We present CellVerse, a unified language-centric single-cell analysis benchmark within the realm of LLMs for cell biology.
Abstract: Recent studies have demonstrated the feasibility of modeling single-cell data as natural languages and the potential of leveraging powerful large language models (LLMs) for understanding cell biology. However, a comprehensive evaluation of LLMs' performance on language-driven single-cell analysis tasks still remains unexplored. Motivated by this challenge, we introduce CellVerse, a unified language-centric question-answering benchmark that integrates four types of single-cell multi-omics data and encompasses three hierarchical levels of single-cell analysis tasks: cell type annotation (cell-level), drug response prediction (drug-level), and perturbation analysis (gene-level). Going beyond this, we systematically evaluate the performance across 14 open-source and closed-source LLMs ranging 160M $\rightarrow$ 671B on CellVerse. Remarkably, the experimental results reveal: (1) Existing specialist models (C2S-Pythia) fail to make reasonable decisions across all sub-tasks within CellVerse, while generalist models such as Qwen, Llama, GPT, and DeepSeek family models exhibit preliminary understanding capabilities within the realm of cell biology. (2) The performance of current LLMs falls short of expectations and has substantial room for improvement. Notably, in the widely studied drug response prediction task, none of the evaluated LLMs demonstrate significant performance improvement over random guessing. CellVerse offers the first large-scale empirical demonstration that significant challenges still remain in applying LLMs to cell biology. By introducing CellVerse, we lay the foundation for advancing cell biology through natural languages and hope this paradigm could facilitate next-generation single-cell analysis. Project Page: https://cellverse-cuhk.github.io
Croissant File: json
Dataset URL: https://huggingface.co/datasets/Karl28/CellVerse
Code URL: https://github.com/zfkarl/CellVerse
Primary Area: AL/ML Datasets & Benchmarks for life sciences (e.g. climate, health, life sciences, physics, social sciences)
Submission Number: 642
Loading