Integrating Generative and Experimental Platforms or Biomolecular Design

Published: 08 Mar 2024, Last Modified: 08 Mar 2024ICLR 2024 WorkshopsEveryoneRevisionsBibTeXCC BY 4.0
Workshop Type: In-person
Keywords: Generative machine learning, biomolecular design
Abstract: Biomolecular design, through artificial engineering of proteins, ligands, and nucleic acids, holds immense promise in addressing pressing medical, industrial, and environmental challenges. While generative machine learning has shown significant potential in this area, a palpable disconnect exists with experimental biology: many ML research efforts prioritize static benchmark performance, potentially sidelining impactful biological applications. This workshop seeks to bridge this gap by bringing computationalists and experimentalists together, catalyzing a deeper interdisciplinary discourse. Together, we will explore the strengths and challenges of generative ML in biology, experimental integration of generative ML, and pinpoint biological problems ready for ML. To attract high-quality and diverse research, we partnered with Cell Systems for a special collection, and we created dedicated tracks for in-silico ML research and hybrid ML-experimental biology research. Our lineup features renowned scientists as speakers and emerging leaders as panelists, encapsulating a spectrum from high-throughput experimentation and computational biology to generative ML. With a diverse organizing team and backed by industry sponsors, we dedicate the workshop to pushing the boundaries of ML's role in biology.
Submission Number: 32