Abstract: RAG systems rely on rerankers to identify relevant documents. However, fine-tuning these models remains challenging due to the scarcity of annotated query-document pairs. Existing distillation-based approaches suffer from training-inference misalignment and fail to capture interdependencies among candidate documents. To overcome these limitations, we reframe the reranking process as an attention-mask problem and propose Gumbel Reranking, an end-to-end training framework for rerankers aimed at minimizing the training-inference gap. In our approach, reranker optimization is reformulated as learning a stochastic, document-wise Top-$k$ attention mask using the Gumbel Trick and Relaxed Top-$k$ Sampling. This formulation enables end-to-end optimization by minimizing the overall language loss. Experiments across various settings consistently demonstrate performance gains, including a 10.4\% improvement in recall on HotpotQA for distinguishing indirectly relevant documents.
Paper Type: Long
Research Area: Information Retrieval and Text Mining
Research Area Keywords: re-ranking, retrieval-augmented generation
Languages Studied: English
Submission Number: 3739
Loading