Abstract: Protein-protein interaction (PPI) represents a central challenge within the biology field, and accurately predicting the consequences of mutations in this context is crucial for drug design and protein engineering. Deep learning (DL) has shown promise in forecasting the effects of such mutations but is hindered by two primary constraints. First, the structures of mutant proteins are often elusive to acquire. Secondly, PPI takes place dynamically, which is rarely integrated into the DL architecture design. To address these obstacles, we present a novel framework named Refine-PPI with two key enhancements. First, we introduce a structure refinement module trained by a mask mutation modeling (MMM) task on available wild-type structures, which is then transferred to hallucinate the inaccessible mutant structures. Second, we employ a new kind of geometric network, called the probability density cloud network (PDC-Net), to capture 3D dynamic variations and encode the atomic uncertainty associated with PPI. Comprehensive experiments on SKEMPI.v2 substantiate the superiority of Refine-PPI over all existing tools for predicting free energy change. These findings underscore the effectiveness of our hallucination strategy and the PDC module in addressing the absence of mutant protein structure and modeling geometric uncertainty.
Submission Length: Regular submission (no more than 12 pages of main content)
Assigned Action Editor: ~Quanquan_Gu1
Submission Number: 3685
Loading