Lifelong Audio-video Masked Autoencoder with Forget-robust Localized Alignments

16 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Primary Area: representation learning for computer vision, audio, language, and other modalities
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: continual-learning audio-visual representation-learning
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: In this paper, we present continual audio-video representation learning, with an approach to selective pre-train the model with highly currated audio-video tokens.
Abstract: We present a lifelong audio-video masked autoencoder that continually learns the multimodal representations from a video stream containing audio-video pairs, while its distribution continually shifts over time. Specifically, we propose two novel ideas to tackle the problem: (1) Localized Alignment: We introduce a small trainable multimodal encoder that predicts the audio and video tokens that are well-aligned with each other. This allows the model to learn only the highly correlated audiovisual patches with accurate multimodal relationships. (2) Forget-robust multimodal patch selection: We compare the relative importance of each audio-video patch between the current and past data pair to mitigate unintended drift of the previously learned audio-video representations. Our proposed method, FLAVA (Forget-robust Localized Audio-Video Alignment), therefore, captures the complex relationships between the audio and video modalities during training on a sequence of pre-training tasks while alleviating the forgetting of learned audiovisual correlations. Our experiments validate that FLAVA outperforms the state-of-the-art continual learning methods on several benchmark datasets under continual audio-video representation learning scenarios.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: zip
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 717
Loading