Uncertainty Calibration via Knowledge Flow under Long-tailed DistributionDownload PDF

22 Sept 2022 (modified: 13 Feb 2023)ICLR 2023 Conference Withdrawn SubmissionReaders: Everyone
Keywords: Long-tailed, Calibration
Abstract: How to estimate the uncertainty of a given model is a crucial problem. Current calibration techniques treat different classes equally and thus implicitly assume that the distribution of training data is balanced, but ignore the fact that real-world data often follows a long-tailed distribution. In this paper, we explore the problem of calibrating the model trained from a long-tailed distribution. Due to the difference between the imbalanced training distribution and balanced test distribution, existing calibration methods such as temperature scaling can not generalize well to this problem. Specific calibration methods for domain adaptation are also not applicable because they rely on unlabeled target domain instances which are not available. Models trained from a long-tailed distribution tend to be more overconfident to head classes. To this end, we propose a novel knowledge flow based calibration method by estimating the importance weight for samples of tail classes to realize long-tailed calibration. Our method models the distribution of each class as a Gaussian distribution and view the source statistics of head classes as a prior to calibrate the target distributions of tail classes. We transfer knowledge from head classes to get the target probability density of tail classes. The importance weight is estimated by the ratio of the target probability density over the source probability density. Extensive experiments on CIFAR-10-LT, MNIST-LT, CIFAR-100-LT, and ImageNet-LT datasets demonstrate the effectiveness of our method.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
TL;DR: We propose a novel method to realize the calibration under long-tailed distribution
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Deep Learning and representational learning
5 Replies

Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview