TopoZero: Digging into Topology Alignment on Zero-Shot LearningDownload PDF

Published: 01 Feb 2023, Last Modified: 13 Feb 2023Submitted to ICLR 2023Readers: Everyone
Keywords: Zero-Shot Learning, Structure Alignment, Persistent Homology
Abstract: Common space learning, associating semantic and visual domains in a common latent space, is essential to transfer knowledge from seen classes to unseen ones on Zero-Shot Learning (ZSL) realm. Existing methods for common space learning rely heavily on structure alignment due to the heterogeneous nature between semantic and visual domains, but the existing design is sub-optimal. In this paper, we utilize persistent homology to investigate geometry structure alignment, and observe two following issues: (i) The sampled mini-batch data points present a distinct structure gap compared to global data points, thus the learned structure alignment space inevitably neglects abundant and accurate global structure information. (ii) The latent visual and semantic space fail to preserve multiple dimensional geometry structure, especially high dimensional structure information. To address the first issue, we propose a Topology-guided Sampling Strategy (TGSS) to mitigate the gap between sampled and global data points. Both theoretical analyses and empirical results guarantee the effectiveness of the TGSS. To solve the second issue, we introduce a Topology Alignment Module (TAM) to preserve multi-dimensional geometry structure in latent visual and semantic space, respectively. The proposed method is dubbed TopoZero. Empirically, our TopoZero achieves superior performance on three authoritative ZSL benchmark datasets.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Applications (eg, speech processing, computer vision, NLP)
TL;DR: we utilize persistent homology to investigate geometry structure alignment, based on which, we propose a TopoZero framework to achieve multi-dimensional structure alignment.
20 Replies

Loading