Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: information theory, generalization bound, learning theory, minimum error entropy
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: Information-theoretic generalization analysis has achieved astonishing success in characterizing the generalization capabilities of noisy and iterative learning algorithms. However, current advancements are mostly restricted to average-case scenarios and necessitate the stringent bounded loss assumption, leaving a gap with regard to computationally tractable PAC generalization analysis, especially for long-tailed loss distributions. In this paper, we bridge this gap by introducing a novel class of PAC bounds through leveraging loss entropies. These bounds simplify the computation of key information metrics in previous PAC information-theoretic bounds to one-dimensional variables, thereby enhancing computational tractability. Moreover, our data-independent bounds provide novel insights into the generalization behavior of the minimum error entropy criterion, while our data-dependent bounds improve over previous results by alleviating the bounded loss assumption under both leave-one-out and supersample settings. Extensive numerical studies indicate strong correlations between the generalization error and the induced loss entropy, showing that the presented bounds adeptly capture the patterns of the true generalization gap under various learning scenarios.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: zip
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: learning theory
Submission Number: 1740
Loading