Keywords: Large Language Models, Quantum Computing, Variational Quantum Algorithms
TL;DR: We use LLMs to find architectures for quantum algorithms and evaluate them with application benchmarks including quantum chemistry and quantum finance tasks.
Abstract: Large Language Models (LLMs) contribute significantly to the development of conversational AI and has great potentials to assist the scientific research in various areas. This paper attempts to address the following questions: What opportunities do the current generation of generative pre-trained transformers (GPTs) offer for the developments of noisy intermediate-scale quantum (NISQ) technologies? Additionally, what potentials does the forthcoming generation of GPTs possess to push the frontier of research in fault-tolerant quantum computing (FTQC)? In this paper, we implement a QGAS model, which can rapidly propose promising ansatz architectures and evaluate them with application benchmarks including quantum chemistry and quantum finance tasks. Our results demonstrate that after a limited number of prompt guidelines and iterations, we can obtain a high-performance ansatz which is able to produce comparable results that are achieved by state-of-the-art quantum architecture search methods. This study provides a simple overview of GPT’s capabilities in supporting quantum computing research while highlighting the limitations of the current GPT at the same time. Additionally, we discuss futuristic applications for LLM in quantum research.
Primary Area: applications to physical sciences (physics, chemistry, biology, etc.)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 8609
Loading