Soft Prompting for Unlearning in Large Language Models

ACL ARR 2024 June Submission3455 Authors

16 Jun 2024 (modified: 02 Jul 2024)ACL ARR 2024 June SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Abstract: The widespread popularity of Large Language Models (LLMs), partly due to their unique ability to perform in-context learning, has also brought to light the importance of ethical and safety considerations when deploying these pre-trained models. In this work, we focus on investigating machine unlearning for LLMs motivated by data protection regulations. In contrast to the growing literature on fine-tuning methods to achieve unlearning, we focus on a comparatively lightweight alternative called soft prompting to realize the unlearning of a subset of training data. With losses designed to enforce forgetting as well as utility preservation, our framework Soft Prompting for Unlearning (SPUL) learns prompt tokens that can be appended to an arbitrary query to induce unlearning of specific examples at inference time without updating LLM parameters. We conduct a rigorous evaluation of the proposed method and our results indicate that SPUL can significantly improve the trade-off between utility and forgetting in the context of text classification with LLMs. We further validate our method using multiple LLMs to highlight the scalability of our framework and provide detailed insights into the choice of hyperparameters and the influence of the size of unlearning data. Code and data are available at https://tinyurl.com/softprompt.
Paper Type: Long
Research Area: NLP Applications
Research Area Keywords: parameter-efficient-training, security/privacy, sentiment analysis
Contribution Types: Model analysis & interpretability, Approaches to low-resource settings
Languages Studied: English
Submission Number: 3455
Loading