KURTAIL : KURTOSIS-BASED LLM QUANTIZATION

Published: 05 Mar 2025, Last Modified: 03 Apr 2025SLLMEveryoneRevisionsBibTeXCC BY 4.0
Track: tiny / short paper (up to 4 pages)
Keywords: Quantization LLM Rotation Kurtosis
Abstract: One of the challenges of quantizing a large language model (LLM) is the presence of outliers. Outliers often make uniform quantization schemes less effective, particularly in extreme cases such as 4-bit quantization. We introduce KurTail, a new post-training quantization (PTQ) scheme that leverages Kurtosis-based rotation to mitigate outliers in the activations of LLMs. Our method optimizes Kurtosis as a measure of tailedness. This approach enables the quantization of weights, activations, and the KV cache in 4 bits. KurTail utilizes layer-wise optimization, ensuring memory efficiency. KurTail outperforms existing quantization methods, offering a 13.3\% boost in MMLU accuracy and a 15.5\% drop in Wiki perplexity compared to QuaRot. It also outperforms SpinQuant with a 2.6\% MMLU gain and reduces perplexity by 2.9\%, all while reducing the cost of training the rotation. For comparison, learning the rotation using SpinQuant for Llama3-70B requires at least four NVIDIA H100 80GB GPUs, whereas our method requires only a single GPU, making it a more accessible solution for consumer GPU.
Anonymization: This submission has been anonymized for double-blind review via the removal of identifying information such as names, affiliations, and identifying URLs.
Submission Number: 82
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview