Keywords: optimization, submodular, p-matchoid, non-monotone, dynamic
Abstract: Submodular maximization subject to a $p$-matchoid constraint has various applications in machine learning, particularly in tasks such as feature selection, video and text summarization, movie recommendation, graph-based learning, and constraint-based optimization. We study this problem in the dynamic setting, where a sequence of insertions and deletions of elements to a $p$-matchoid $\mathcal{M}(\mathcal{V},\mathcal{I})$ occurs over time and the goal is to efficiently maintain an approximate solution.
We propose a dynamic algorithm for non-monotone submodular maximization under a $p$-matchoid constraint. For a $p$-matchoid $\mathcal{M}(\mathcal{V},\mathcal{I})$ of rank $k$, defined by a collection of $m$ matroids, our algorithm guarantees a $(2p + 2\sqrt{p(p+1)} + 1 + \epsilon)$-approximate solution at any time $t$ in the update sequence, with an expected amortized query complexity of $O(\epsilon^{-3} pk^4 \log^2(k))$ per update.
Primary Area: Theory (e.g., control theory, learning theory, algorithmic game theory)
Submission Number: 24172
Loading