Keywords: large language models, self-awareness, agent, controllability
TL;DR: A multi-round reflection-based frame enhancing controllability in LLMs, making them self-awareness of their current status.
Abstract: The applications of large language models (LLMs) have been widely spread across all domains.
However, the basic abilities such as the controllability of LLMs are still limited.
To address this, we propose "$\textbf{Self-controller}$", a novel agentic framework bringing self-awareness into LLMs’ reasoning logic.
The core idea of this work is to maintain states based on the LLM's response, letting the LLM become self-aware of current status and think step by step in a multi-round chain-of-thought paradigm.
Our experiment on the state of textual length has shown the controllability and effectiveness of the Self-controller. We further implement a binary search algorithm to accelerate the generation process based on the linearity and monotonicity of the textual length state. Another advantage of the Self-controller comes with DeepSeek's Context Caching technology, which significantly saves computational token consumption when a cluster of conversations shares the same prefix of context. Theoretically, we prove that in this scenario the extra time complexity is $O(c \log n)$. Results of the back-of-the-envelope estimation suggest that the token consumption of our method is no more than twice as much as that of the trivial single-round generation. Furthermore, our ablation study on word constraints demonstrates the Self-controller's consistent controllability across all foundation models.
Primary Area: foundation or frontier models, including LLMs
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 3501
Loading